Gases

Section 13.1 The Gas Laws

In your textbook, read about the basic concepts of the three gas laws.

Use each of the terms below to complete the passage. Each term may be used more than once.

<table>
<thead>
<tr>
<th>pressure</th>
<th>temperature</th>
<th>volume</th>
</tr>
</thead>
</table>

Boyle’s law relates (1)_______________ and (2)_______________ if (3)_______________ and amount of gas are held constant. Charles’s law relates (4)_______________ and (5)_______________ if (6)_______________ and amount of gas are held constant. Gay-Lussac’s law relates (7)_______________ and (8)_______________ if (9)_______________ and amount of gas are held constant.

In your textbook, read about the effects of changing conditions on a sample of gas.

For each question below, write increases, decreases, or stays the same.

10. The room temperature increases from 20°C to 24°C. What happens to the pressure inside a cylinder of oxygen contained in the room?

11. What happens to the pressure of the gas in an inflated expandable balloon if the temperature is increased?

12. An aerosol can of air freshener is sprayed into a room. What happens to the pressure of the gas if its temperature stays constant?

13. The volume of air in human lungs increases before it is exhaled. What happens to the temperature of the air in the lungs to cause this change, assuming pressure stays constant?

14. A leftover hamburger patty is sealed in a plastic bag and placed in the refrigerator. What happens to the volume of the air in the bag?

15. What happens to the pressure of a gas in a lightbulb a few minutes after the light is turned on?
Section 13.2 The Combined Gas Law and Avogadro’s Principle

In your textbook, read about the combined gas law.

Fill in the following table. State what gas law is derived from the combined gas law when the variable listed in the first column stays constant and the variables in the second column change.

<table>
<thead>
<tr>
<th>Stays constant</th>
<th>Change</th>
<th>Becomes this law</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>Temperature, pressure</td>
<td>1.</td>
</tr>
<tr>
<td>Temperature</td>
<td>Pressure, volume</td>
<td>2.</td>
</tr>
<tr>
<td>Pressure</td>
<td>Temperature, volume</td>
<td>3.</td>
</tr>
</tbody>
</table>

In your textbook, read about the relationships among temperature, pressure, and volume of a sample of gas.

Fill in the blanks between the variables in the following concept map to show whether the variables are directly or inversely proportional to each other. Write direct or inverse between the variables.

4. ___________ 5. ___________

6. ___________ pressure

In your textbook, read about the combined gas law and Avogadro’s principle.

Circle the letter of the choice that best completes the statement or answers the question.

7. The variable that stays constant when using the combined gas law is
 a. amount of gas. b. pressure. c. temperature. d. volume.

8. The equation for the combined gas law can be used instead of which of the following equations?
 a. Boyle’s law b. Charles’s law c. Gay-Lussac’s law d. all of these

9. Which of the following expresses Avogadro’s principle?
 a. Equal volumes of gases at the same temperature and pressure contain equal numbers of particles.
 b. One mole of any gas will occupy a certain volume at STP.
 c. STP stands for standard temperature and pressure.
 d. The molar volume of a gas is the volume that one mole occupies at STP.
Section 13.2 continued

Answer the following questions.

10. What is standard temperature and pressure (STP)?

11. What is the molar volume of a gas equal to at STP?

In your textbook, read about how to solve problems using the combined gas law and Avogadro’s principle.

Each problem below needs more information to determine the answer. List as many letters as are needed to solve the problem.

- a. molar volume of the gas
- b. molar mass of the gas
- c. temperature of the gas
- d. pressure of the gas
- e. volume of the gas
- f. No further information is needed.

12. What volume will 1.0 g N₂ gas occupy at STP?

13. What volume will 2.4 mol He occupy at STP?

14. A gas sample occupies 3.7 L at 4.0 atm and 25°C. What volume will the sample occupy at 27°C?

15. A sample of carbon dioxide is at 273 K and 244 kPa. What will its volume be at 400 kPa?

16. A sample of oxygen occupies 10.0 L at 4.00 atm pressure. At what temperature will the pressure equal 3.00 atm if the final volume is 8.00 L?

17. At what pressure will a sample of gas occupy 5.0 L at 25°C if it occupies 3.2 L at 1.3 atm pressure and 20°C?

18. How many grams of helium are in a 2-L balloon at STP?

19. One mole of hydrogen gas occupies 22.4 L. What volume will the sample occupy if the temperature is 290 K and the pressure is 2.0 atm?
Section 13.2 The Ideal Gas Law

In your textbook, read about the ideal gas law.

Answer the following questions.

1. Why is the mathematical relationship among the amount, volume, temperature, and pressure of a gas sample called the ideal gas law?

2. Define the ideal gas constant, R.

3. In Table 14.1 in your textbook, why does R have different numerical values?

4. What variable is considered in the ideal gas law that is not considered in the combined gas law?

In your textbook, read about real versus ideal gases.

For each statement below, write true or false.

5. An ideal gas is one whose particles take up space.
6. At low temperatures, ideal gases liquefy.
7. In the real world, gases consisting of small molecules are the only gases that are truly ideal.
8. Most gases behave like ideal gases at many temperatures and pressures.
9. No intermolecular attractive forces exist in an ideal gas.
10. Nonpolar gas molecules behave more like ideal gases than do gas molecules that are polar.
11. Real gases deviate most from ideal gas behavior at high pressures and low temperatures.
12. The smaller the gas molecule, the more the gas behaves like an ideal gas.
Section 13.2 \textit{continued}

In your textbook, read about applying the ideal gas law.

Rearrange the ideal gas law, \(PV = nRT \), to solve for each of the following variables. Write your answers in the table.

<table>
<thead>
<tr>
<th>Variable to Find</th>
<th>Rearranged Ideal Gas Law Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>13.</td>
</tr>
<tr>
<td>(P)</td>
<td>14.</td>
</tr>
<tr>
<td>(T)</td>
<td>15.</td>
</tr>
<tr>
<td>(V)</td>
<td>16.</td>
</tr>
</tbody>
</table>

In your textbook, read about using the ideal gas law to solve for molar mass, mass, or density.

Use the following terms below to complete the statements. Each term may be used more than once.

\[
\text{mass} \quad \text{molar mass} \quad \text{volume}
\]

The number of moles of a gas is equal to the \((17)\) \quad \text{divided by the} \quad \text{(18)}.

Density is defined as \((19)\) \quad \text{per unit} \quad \text{(20)}.

To solve for \(M \) in the equation \(M = \frac{mnRT}{PV} \), the \((21)\) \quad \text{and the} \quad \text{(22)} \quad \text{of the gas must be known}.

According to the equation \(D = \frac{MP}{RT} \), the \((23)\) \quad \text{of the gas must be known when calculating density}.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
Section 13.3 Gas Stoichiometry

In your textbook, read about gas stoichiometry.

Balance the following chemical equation. Then use the balanced equation to answer the questions.

1. \(\underline{\text{_____} \text{H}_2(g) + \underline{\text{_____}} \text{O}_2(g) \rightarrow \underline{\text{_____}} \text{H}_2\text{O}(g)} \)

2. List at least two types of information provided by the coefficients in the equation.

3. If 4.0 L of water vapor is produced, what volume of hydrogen reacted? What volume of oxygen?

4. If it is known that 2 mol of hydrogen reacts, what additional information would you need to know to find the volume of oxygen that would react with it?

5. List the steps you would use to find the mass of oxygen that would react with a known number of moles of hydrogen.

6. Find the mass of water produced from 4.00 L \(\text{H}_2 \) at STP if all of it reacts. Show your work.